AROMA IST-4-027567

D23

Final Report

Contractual Date of Delivery to the CEC: 31-12-2007
Actual Date of Delivery to the CEC: 11-01-2008
Editor(s): Fernando Casadevall (UPC)
Participant(s): UPC, KCL, PTIN, TI, TID, TEL, IST-TUL
Workpackage: WP1
Est. person months: 0.5
Security: PU
Nature: Report
Version: 1.0
Total number of pages: 116

Abstract:
This deliverable constitutes the final report of the project IST-4-027567 AROMA. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.

For more detailed technical results please consider the public deliverables, available at http://www.aroma-ist.upc.edu

Keyword list: Co-operation with other Projects, Concertation Activities
DISCLAIMER

The work associated with this report has been carried out in accordance with the highest technical standards and the AROMA partners have endeavoured to achieve the degree of accuracy and reliability appropriate to the work in question. However since the partners have no control over the use to which the information contained within the report is to be put by any other party, any other such party shall be deemed to satisfied itself as to the suitability and reliability of the information in relation to any particular use, purpose or application.

Under no circumstances will any of the partners, their servants, employees or agents accept any liability whatsoever arising out of any error or inaccuracy contained in this report (or any further consolidation, summary, publication or dissemination of the information contained within this report) and/or the connected work and disclaim all liability for any loss, damage, expenses, claims or infringement of third party rights.
DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-12-2007</td>
<td>1.0</td>
<td>Int</td>
<td>Draft for comments</td>
</tr>
<tr>
<td>7-01-2008</td>
<td>2.0</td>
<td>Int</td>
<td>Final version for comments and approval by the PCC members</td>
</tr>
<tr>
<td>11-01-2008</td>
<td>1.0</td>
<td>Apr</td>
<td>Submission to the E.U.</td>
</tr>
</tbody>
</table>
Table of Contents

1. Overview of General Project Objectives .. 1
2. Contractor Involved ... 7
3. Work Performed .. 8
4. End Results ... 10
 4.1 AROMA QoS Framework .. 10
 4.1.1 Coordinated Access Resource Management (CARM) .. 12
 4.1.2 CARM examples ... 14
 4.1.3 Conclusions on QoS Resource Management issues .. 18
 4.2 Radio Resource Management (RRM) .. 18
 4.2.1 Introduction ... 18
 4.2.2 Common Radio Resource Management (CRRM) .. 19
 4.2.3 Intrinsic RRM Strategies ... 32
 4.3 Automated Tuning Mechanisms ... 45
 4.3.1 Functional Architecture ... 45
 4.3.2 Parameter Optimisation ... 47
 4.3.3 Conclusions on Automated Tuning mechanisms ... 52
 4.4 Resource Management in The Transport Network Layer ... 53
 4.4.1 Framework of the Study ... 54
 4.4.2 Resource Management & QoS Framework ... 57
 4.4.3 Conclusions on Transport Layer Network .. 59
 4.5 Implementation issues in resource management: AROMA's approach ... 59
 4.5.1 RRM implementation aspects ... 60
 4.5.2 CRRM implementation aspects ... 60
 4.5.3 CARM implementation aspects ... 63
 4.5.4 Conclusions on implementation issues ... 67
 4.6 AROMA Testbed ... 67
 4.6.1 AROMA Testbed Overview .. 68
 4.6.2 Innovative Issues ... 70
 4.6.3 Feasible Trials ... 76
 4.6.4 Testbed Conclusions .. 77
 4.7 Techno-economic aspects of RRM techniques in Heterogeneous Networks ... 78
 4.7.1 Addressed Methodology .. 78
 4.7.2 Economic impacts and business models of RRM mechanisms for micro-cell and WLAN usage within the 3G networks .. 80
 4.7.3 Qualitative techno-economic analysis of long-term all IP mobile network architecture evolution .. 81
 4.7.4 Techno-economic evaluation of mobile TV service over MBMS .. 83
 4.7.5 Techno-economic evaluation of fittingness factor CRRM algorithm ... 86
 4.7.6 Conclusions on Techno-economic evaluation .. 88
5 Main conclusions reached .. 90

Annex 1.- List of Publications ... 97
Annex 2.- Relation with the Standards .. 102
Annex 3: Patents ... 103
Acronym List ... 104
EXECUTIVE SUMMARY

This report summarises the main achievements of the AROMA Project, an IST research and technological development project carried out between January 2006 and December 2007 by Universitat Politècnica de Catalunya (UPC); King’s College London (KCL); Portugal Telecom Inovaçao (PTIN); Telecom Italia Lab (TILAB); Telefónica Investigación y Desarrollo (TID); TeliaSonera (TEL); Instituto Tecnico Superior-Technical University of Lisbon (IST-TUL).

The most important technical achievements of the project cover many different aspects related to Radio Resource and QoS Management and Common Radio Resource Management (CRRM) including both wireless and wired part. Different algorithms related to Admission Control, Congestion Control as well as on Packet Scheduling procedures have been proposed and evaluated for the envisaged Radio Access Technologies. Moreover issues related to the end-to-end QoS architecture have been also studied and evaluated. Besides the technical evolutions, some economic analyses have been carried out too in order to provide some guideline methodology for the estimation of the potential economic impacts of the main investigated solutions.

The Performance evaluation of the proposed QoS architecture and RRM/CRRM techniques was completed by means of a set of laboratory tests carried out using a real time testbed (Demonstrator) developed in the project. This Demonstrator is a SW/HW flexible tool, which provides a realistic real time emulation of an evolved B3G radio access system able to manage multimedia IP based applications. Finally, significant dissemination policy, based on publications on high quality magazines and conferences, was carried out. Moreover, several standards contributions were also generated and presented to the pertinent 3GPP technical committees.